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Let X é&enote a real or complex Banach space. By a nonexpangive

semi-group, we will mean a strongly continuous semi-group {T(t); t > 0O}

of nonexpansive transformations from X into X. The strong infinitesimal

generator A of such a semi-group {T(t); t> 0} is defined by

Ax lim Ah X, with domain consisting of all x for which this limit
h=0 )

exists, vhere A x = (1/n){G(h)x - x] for x in X and h> O. The

weak infinitesimal generator is defined similarly, using the weak limit

in place of the strong limit. We give a necessary and sufficient condition,
in the case that X 1is a Hilbert space, that a densely defined operator

in X be the strong infinitesimal generator of a nonexpansive semi-group.
This may be considered a nonlinear analogue to the Hille-Yosida~Phillips
Theorem, see [5, Theorem 13, p.624] or 16, Section 12.3]. Our other results
assume either that X* 1s uniformly convex or that X and X¥ are
uniformly convex. These results consist of sufficient conditions for an
operator in X to determine a nonexpansive semi-group in certain ways, as
well as some continuity properties of derivatives of nonexpansive semi-
groups. For other nonlinear analogues to the theory of linear semi-groups,
see 2], 31, (%1, [71, [8], 110], [11], and [12]. The main tool of

proof in this paper is the notion of a multivalued dissipative operator

as used by Komura in [8]. For the connection between linear dissipative
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opera‘tqij'.ég and linear contraction semi-groups, see [9] by Lumer and
Phillips. Section 1 contains the statements of the main results and a
discussion of them. Section 2 contains two lemmas about dissipative

operators, and Section 3 contains the proofs of the main results.

1. The main results.

Definition 1. The duality mep F from X into X* is defined by
Fx = ¢ ¢ 1]xxl] = ||x|] and (%, x*) = Hxl\e} . It is known that
F  is single valued if Xx* is strictly convex, and that F is uniformly
conﬁinuous on bounded sets if X* is uniformly convex, see [7, Lemma 1.2‘].

By a multivalued operator __i_r_i _)_(_, we mean a transformation A from

a subset of X into the collection of all subsets of X. We (somewhat
loosely) include the operators (i.e., single valued operators) among the
multivalued operators.

A multivalued operator A in X 1is said to be dissipative if

Re (x" - ¥', £) < 0
for x, y e D(A), xt e Ax, y' € Ay, end f e F(x - y).
Remaerk. If ({T(t); t >0} is a nonexpansive semi-group, then both
the weak and the strong infinitesimal generators of {T(t)} are

dissipative. To see this, let t >0, x, y€X, and f e F(x - y). Then

Re ((T(t)x - x) - (T(t)y - ¥), £) =
2
Re (T(t)x - T(t)y, £} - l|lx - ¥]|"L 0.
Lemma 1. Suppose A 1is a multivalued dissipative operator in X.

Then I - A has a single valued nonexpansive ''inverse'' defined on the



‘Ttrange''. R(I - A) of I - A
R(I ~A)={y: yex=~-Ax for some x < D(A)},
(z - A)-ly = {x e D(A): ¥ € x - Ax}.
If R(I - A) =X, then Ax is a closed convex set for each x in D(A).
Proof. To prove the first statement, let x, y € D(4), x' € Ax,
Yo ely, z=%x-x",w=y -y, and T ¢ F(x ; ¥). Then
e - w11 - w1} > Re(z - v, ©) =
e - w112 - Be (' -y, ) 2 {]x - w]%
Thus, |lx - y|| >z - w|l.

To prove the second statement, notice that the operator A* defined
on D(A) by letting A¥x be the closed convex hull of Ax is also
dissipative, and thus cannot properly extend A if R(I - A) = X.

Definition 2. If X is uniformly convex and A is a multivalued
dissipative operator in X such that R(I - A) = X, then we definé
T,» the irace of 4, on D(A) by letting T,x be the point of Ax
which is nearest the origin. An operator B in X is said to be a trace

operator if it is the trace of such an operator A; B is said to be a

maximal trace operator if B is a trace operator and no trace operator

properly extends B.

Theorem 1. Suppose X* is uniformly convex and A 1is a densely
defined multivalued dissipative operator in X such that R(I - A) = X.
Then there is a unique nonexpansive semi-group {T(t); t >0} such that:

i) If x e D(A), then T(t) x € D(A)

a.e. on [0, =), T(+)x is strongly differentiable
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a.e. on [0, »), and
(a/at) T(t)x ¢ A T(t) x
a.e. on [0, =),
ii) If x e D(A), then (a/at) T(t)x is Bochner integrable on
bounded intervals, and
T(t) x =x+ | (a/d5) T(5)x dg
for t >0. °
Furthermore, it is true that if 2 e D(A) and ¥y € Ax, then

H(a/at) T(e)x]} <Hlvl]

a.e. on [0, »).

Theorem 2. Suppose X and X* are uniformly convex and B is a
densely defined trace operator in X. Then there is unigue nonexpansive
semi-group {T(t); t > 0} whose strong infinitesimal genreator is an
extension of B. Furthermore, if x e D(B), then T(t)x ¢ D(B) for
t 20, and BT(-)x is strongly continuous from the right on [0, =).

If R(I - B) = X (vhich makes B a .trace operator), then B is the
strong and the weak infinitesimal generator of {T(%t)} , and BT()x is
weakly continuous on [0, ») for x e D(B).

Theorem 3, If X is a Hilbert space, and B 1is a densely defined
operator in X, then B is the strong infinitesimal generator of a
nonexpansive semi-group if and only if B is a maximal trace operator.

Remarks. Theorem 1 is primarily a generalization (somewhat trivial)
and a sharpening (nontrivial) of Komura's Theorem 4 in [8]. The semi-group
{T(t)} is constructed by Komura's method, but wé show that the differential

equation.

’
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(8/at) T(t)x e A T(t)x

is satisfied in a much stronger sense than that established by Komura.

Theorem 2 shows that a densely defined trace operator B is almost
as good as an infinitesimal generator;not only is there a unique non-
expansive semi-group ({T(t)} whose strong infinitesimal generator extends
B, but

t
T(t)x.—_x+J B T(g) x dg ,
o}

DrT(t)x =B T(t) x

for x € D(B) and t >0, where D, denotes the strong right derivative.
The last statement of Theorem 2 partly clears up points raised by
Browder [2, p. 8701 and Kato [7, Remark 2 after Theorem 3].

The Hille-Yosida-Phillips Theorem for linear semi-groups charac-
terizes semi-group generators; whereas our Theorem 3 characterizes
densely defined generators (in Hilbert space at that), and we do not
‘know that every nonexpansive semi~-group has a densely de}ined strong
infinitesimal generator. Nevertheless, Theorem 3 is the only theorem
of this type that we know of. It is somewhat interesting when applied
to the one dimensional real case: a nonincreasing function B from the
reals into the reals is the strong infinitesimal generator of a non-

expansive semi-group if and only if

IB(x)| = min ([(z=)], |B(x+)])

for all regl x.
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2. Lemmas on dissipative operators.

Lenmma 2. Suppose Y 1s a Banach space and E 1is a multivalued
dissipative operator in Y such that R(I - E) = Y. ILet G denote
the duality map from Y intp Y, Supposeﬁ

1) (s} ©D(E),
ii) x, €Eu for each n,
iii) 1im u o=u, w-limx =x, and
iv) if v e€ Y, then there exists {fn} C y* such that
£ e G(v - un) for each n and 1lim f e G(v - u).

Then u € D(E) and x € Eu. If ¥ is uniformly convex, then (iv)

is superfluous.

Proof, The proof requires only obvious modifications of the proof
of [7, Lemma 2.5].

Lemma 3. Suppose X* 1s uniformly convex, and let
Y= LE([O’ 1], X), the space of (equivalence classes of) strongly
measurable functions f from [0, 1] into X such that ][f(-)lle

is integrable, with
1 2 . 1/2
111y = 1* 12| 1% as1/?
0
Then Y is reflexive, the duality map G from Y idinto ¥* is single

valued, and Y¢ is isometrically isomorphic to L, ([0, 1], X*) with

the action
(5, &) = [* (2(6), &(t)) at
0 .

of Ly([0, 1], X*) on Y.
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Now suppose A is a multivalued dissipative operator in X such

that R(I - A) = X. Defina the multivalued operator E in Y by
" D(B) = {f ¢ Y ¢ £(t) ¢ D(A) a.e. and there exists g e Y such

that g(t) e Af(%) a.e.},

Ef = {g e.Y : g(t) e A (%) a.e.}.
Then E is a multivalued dissipative operator in Y, and R(I - E) = Y.
Let ¢([0, 1], X) denote the space of continuous functions from [0, 1]
into X. If

1) fe) c(lo, 11, X) no(e),
ii) B, € Ea for each n, and
iii) {rxh] converges uniformly to « and {en} converges
weakly in ¥ to B € Y,

then e D(E) and BeE .

Proof. If follows from [1, Theorem 3.2] and the appendix of [8]
that Y is reflexive and that ¥* has the representation claimed,
Consider the duality map G as being from Y into La([o, 1], X*).

let feY and g € Gf. Then

el - f; (£(t), 8(t)) at

[l te@les < Lellalell, - el -

- Therefore R

’}z Heee) |- Hetedlfae = {igilallellos el = HEl,
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so that |la(t)]] = !|£(t)|| a.e. Therefore (£(t), g(t)) = Hf(t)”2
a.e., so that g(t) e F £(t) a.e. |

It now follows readily that the multivalued operator E 1is
dissipative. The fact that R(I - E) = Y follows from the observation
that if g e ¥, then the function f defined by f(t) = (I ~ A)-:L g(t)
is also in Y, and is in D(E).

To prove the last statement of this lemma, suppose that
{ccn} <c¢([o, 11, X), and that {an} converges uniformly to @ on
[0, 1] . ILet |

k = m{\]aﬂ(t)”: te[0, 1], n=1, 2 3.4.3¢
If v €Y, then the sequence { e - v} 1is pointwise dominated by
k+ ||v(+)|]|; thus, so is the sequence {G(an - v)}. Also, since
{an -~ v} converges pointwise to « - v, G(an - v)} converges pointwise
to G(a -~ v) and thus converges strongly in L, ([0, 11, x*) to
G(a - v). The rest follows immediately from Lemma 2.
| 3. Proof of the main theorems.

Proof of Theorem 1. First, we prove that there is at most one
nonexpansive semi-—group satisfying (i) and (ii). If" {s(t)} and
{T(t)} are two such semi-groups, and they agree on D(A), then they
agree everyvhere. ILet x e D(A), f£(t) = ||r(t)x - S(’c)x“z. Then £
is absolutely continuous, and by [7, Lemma 1.3],
£1(t) = 2Re {((a&/at)T(t)x ~ (d/at)s(t)x, F(T(t)x -~ S(t)x))

a.e., so that f£'(t) is nonpositive a.e., and thus £f(t) = 0 for t > O.
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The following claim can be established by an argument almegt exactly
like Komura's argument for Theorem % of [8]. Xomura's theorem is for
a Hilbert space, but the argument generalizes; to see how the'continuity
of the duality map can be used as a substitute for the Hilbert space
structure, see Kato's proof of [7, Lemma h.3]{

There is a nonexpansive semiw-group {T(t); t > 0} having the
following properties. Let x € D(A), y e Ax. There are two sequences
{fn}, {gn} in €([0, 1], X) each converging uniformly to T(+) x
on [0, 1] such that:

i) g () eD(A) for 0K t <1 and n=1, 2...,
ii) £ (t) eAgn(t) for 0< t<1 and n=1, 2,...,

iii) f,' 4is continuous on 70, 1] for n=1, 2, ..., and

iv) e ()] <{ly!) for 0<t <1 and n=1, 2,...
(To make the connection with Komura's argument for [8, Theorem L7,

o g, (8) = (T - (a/ma) £ (8).)

The sequence {fn’] is bounded in Y = Lg(fO, 1], X), and thus some

let fn(t) = Tt(n)x

subsequence {fm'} converges veakly to an element B of Y. ILet
n

n m

@ =g ,B =1f" 0= 7(+) x. Then (e} <D(E) n'c(fo, 1], X),
n n M L

B, € E o for each n, {a§ converges uniformly to ¢, and (ﬁn}
converges Weakly to "B. . Therefore, % ¢ D(E) and B € Ed. Aleo,
HEIOT L [|¥|] a-e., since the set of 21l functions in Y satisfying
this condition is convex and strongly closed, thus weakly closed.

If x¥ eXr, 0 7t <1, and g(g):= ch,t](g)x* for 0L E<L1,

then g ¢ La((o, 1], ¥), and
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(£ (8) - £ (0), x) = f; (8_(8), 8(2)) ag ,

n n
(o) - o(0), =) = [*16(8), =) az

at) = af0) + _tﬁ(é) dg .

Thus,

at(t) = (a/dt) T(t)x = B(t) e AT(E) x,

and
[1(a/at) T(e)x|] = {]B(8)}] < [l

a.e. on [0, 1]. This argument could have been given for any bounded
interval, and hence the conclusions hold on [0, =).

Proof of Theorem 2. Suppose B 1is the trace of the densely defined
multivalued dissipative operator A in X, with R(I - A) = X. ILet
{T(t), ¢ 2 0} denote the nonexpansive semi-group associated with A
by Theorem 1 and let AO denote the strong infinitesimél generator of

{T(t)}. We will show that AO’ > B.

Let x e D(B) = D(A). Then by Theorenm 1, [{(a/at) o(t)x]| <||Bx]]|a.e.
Let N Cl0, 1] be a set of measure zero such that T(t)x € D(4),
(a/at) T(t)x e AT(t)x, and ||(a/at) T(t)x|] < ||Bx|] for
teM=[0, 1]\N. Let (£} =M be such;that b <t  forall n
and lim t = 0. Let £(t) = T(t)x for t 20. Then ({f! (t)) is a
bounded sequence in X and thus has a subsequence (£ (e, )} which

n
converges weakly to some element 2z of X. Then by Lemma 2, 2z € AX.
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Thus
fiex{] < {lz]] < 1im inf {{£* (e 11 <
m s 12" ()1 < [ (3511 -
Thus,
Lm £ (e M = [lex]] - Hzll s
. 8o that
zZ =Bx = lim f' (tm) .
Thus,

lim(t_‘o’teM) (a/at)T(t)x = Bx.

This, together with (ii) of Thecrem 1, shows that x ¢ D(AO_) and
on = BX.

Now let x ¢ D(B) = D(A) and O <t< 1 Let {t)} M be such
that t . <t for all n and limt =t. Again, let £(g) = T(g)x
for 0 g <1l. Then (£ (tn)} is a bounded sequence in X and thus has
a subsequence {f' (tm )} which converges weakly to an element v of X.
By Lemma 2, f(t) € D?A) = D(B), and v ¢ A £(t). The argument of the
preceeding paragraph shows that v = BT(t)x = AOT(t)x.

Now that we know that T(t)x ¢ D(B) for x e D(B) and 0 t<1,
the same argument shows that BT(-)x is sti‘ongly continuous from the
right on [0, 1).

The interval [0, 1] could be replaced with any bounded interval

in this argument, so if x e D(B), then T(t)x € D(B) for all t2 O,

~and BT(-)x is strongly continuous from the right on [0, ).



If R(I = B) =X, then B has no proper -dis-sipative extension,
and thus is the strong and weak infinitesimal generator of ([T(t)}.
The fact that BT(-)x is weakly continuous on [0, co)_ for xl ¢ D(B)
in this case was proved by Kato [7, Lemma 4.57.
Proof of Theorem 3. Now suppose that X is a Hilbert space. Suppose
that B 1is a densely defined maximal trace operator. Let [T(f); t >0}

be the nonexpansive semi-group determined by B, and let AO denote the

strong infinitesimal generator of {T(%)}. By [8, Theorem 2], A,

has an extension to a multivalued dissipative cperator A such that
R(I - A) = X. The sem-group associated with A by Theorem 1 is {T(t)},
see [8, Theorem 5]. By the argument of Theorem 2, A. extends the trace

0
T, of A. But D(TA) = D(a) 2D(a,) DD(TA), and therefore A, =T, DB.

0 A

Since B is a maximal trace operator, B = AO.

Now suppose that {T(t); t >0} is a nonexpansive semi-group with

densely defined strong infinitesimal generator A The argument of the

O.
preceeding paragraph shows that AO is a trace operator. Suppose B
is a trace operator which extends Ay say B =Ty, where A is a

muiltivalued dissipative operator in X such that R(I - A) = X. Let
{s(t); t 20} bve the nonexpansive semi-group associated with A by

0 denote the strict infinitesimal generator of

{s(t)}. Again, by the argument for Theorem 2, we have B, °T, = B DA,

The uniqueness argument given for Theorem 1 shows that {S(t)} and

Theorem 1, and let B

{T(t)} agree on D(A), which is dense, so {S(t)} = {T(t)}, and

BO = AO. Therefore B = Ao, and AO is a maximal trace operator,
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